Clustering
- leiden_clustering(gw_mat: ndarray[Any, dtype[float64]], nn: int = 5, resolution: Optional[float] = None, seed: Optional[int] = None) ndarray[Any, dtype[int64]]
Compute clustering of cells based on GW distance, using Leiden clustering on a nearest-neighbors graph
- Parameters
gw_mat (ndarray[Any, dtype[float64]]) – NxN distance matrix of GW distance between cells
nn (int) – number of neighbors in nearest-neighbors graph
resolution (Optional[float]) – If None, use modularity to get optimal partition. If float, get partition at set resolution.
seed (Optional[int]) – Seed for the random number generator. Uses a random seed if nothing is specified.
- Returns
numpy array of cluster assignment for each cell
- Return type